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Synopsis.
Il is shown that the integration method of Landau et al. is inconsistent even 

in the energy region below the cut-off. This inconsistency is present also when no 
ghost states appear. This result implies that Landau’s method is not self-con- 
sistent even for a finite cut-off'.
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§ 1. Introduction and Summary.

Notwithstanding the brilliant success of the renormalization theory of quan
tum electrodynamics in explaining the experimental results with great 

accuracy, doubts have been raised from various sides whether or not the 
theory contains some logical inconsistencies. Thus, it was shown by 
Kallen1) that at least one of the renormalization constants is infinite in 
magnitude. Even if one connives at this point, there still remain some 
questions concerning the finite part of the theory, e. g., the problem of the 
so-called ghost state. In connection with the Lee model2), Kallén and Pauli 
were the first to point at this question, and along these lines many other au
thors have discussed the mathematical consistency of renormalized quantum 
electrodynamics3).

Independently of this approach, Landau and others4) have concluded 
that difficulties similar to those met with in Lee’s model also appear in 
quantum electrodynamics as long as the concept of point interaction is used. 
The same conclusion has been reached by other workers in this field who 
started from somewhat different viewpoints5). One very important point in 
Landau’s approach to the consistency problem of quantum electrodynamics 
lies in the expansion of a certain quantity, the so-called “vertex part”, in a 
power series in e2. It turns out that every coefficient in this expansion has 
a very simple limiting form for high energies, and it is then argued that the 
limiting form of the vertex part itself is given as the sum of the limiting forms 
of the coefficients. Mathematically, such a conclusion is certainly not very 
well justified, and counterexamples can easily be given. It is the aim of the 
present paper to investigate whether or not Landau’s method is selfconsistent 
in spite of these mathematical objections.

To this end, it is very helpful to follow the interesting argument as to 
the mathematical consistency of this theory, developed by Kallén in his 
general consideration6) developed in a recent lecture in Geneva. By intro
ducing some assumptions on the asymptotic form of the current operator, 
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he has shown that the theory might contain internal inconsistencies of a 
kind different from the difficulty connected with the ghost state. In the case 
of Landau’s approximation, however, no further assumptions of this kind 
need to be introduced, since we can take foil advantage of his fundamental 
assumptions from which sufficient information can be derived about the 
asymptotic behaviour of the current operator as well as a very simple relation 
between the bare and the renormalized charges. It will appear that the func
tional equation for the current operator, which is required from the in
variance property of the theory under the renormalization transformation, 
can easily be solved by virtue of Landau’s condition, and it turns out that 
the result is essentially what was conjectured by Kallen.

Thus, in accordance with Kâllén’s argumentation, we are finally led to 
some results contradicting the premises on which our arguments are based. 
Consequently, we have to conclude that one of the following alternative 
statements, or both of them simultaneously, are valid.

(i) Landau’s approximation is incorrect;
(ii) The theory in itself contains an inconsistency independent of that 

found in Landau’s argumentation and, thus, the present quantum field 
theory has no mathematically consistent solution at all.

In order to remove from Landau's theory the difficulty connected with 
the appearance of a ghost state, we have first to introduce a cut-oil' factor 
into our formalism and then to consider the consistency of the resulting 
theory. However, the following question arises immediately. Since a cut-off 
has been introduced, we are no longer left with the canonical formalism as 
usual, because we have modified the canonical commutation relations. Does 
it therefore make any sense to discuss further points of the theory? From 
the viewpoint of correspondence principle, however, we should expect that 
those elements in the present theory, where intimate correspondence with 
reality is established and where the results are strongly supported by ex
perimental evidence, might still survive in a future theory. Our investigation 
has to be considered from this point of view.

In § 2, the main results of Landau’s approximation are summarized 
and, in § 3, the asymptotic forms of the current operator are discussed. In 
§ 4, we complete our arguments, using the results obtained in the preceding 
sections, and give some further discussion related to our conclusion.
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§ 2. Survey of Landau’s Method.

For large momenta | p2 | » m2, m being the mass of the electron, the 
approximation method of Landau et al.4) consists in expanding any quantity 
in a series of the form

m = o
(1)

and in retaining only the first term (corresponding to m = 0) in this series. 
Here, n is the order of the first non-vanishing term in perturbation theory 
and A is the cut-off momentum. A characteristic feature of this approxi
mation method lies in the point that the square of the charge Cq is always 
accompanied by the logarithm of the cut-off parameter.

The most important result with which we shall be concerned in the 
following is the relation between the renormalized charge e and the bare 
one e0 which is given by

The relation (2) has also been derived by Taylor who solved a functional 
equation, required from the renormalization transformation, on the assump
tion that the cut-off parameter always appears as a product

e2 log A2/m2.5)

As is immediately seen from (2), the cut-oil’ parameter A2 must be smaller 
than A2 = ni2 exp (3 x 137) so that we can avoid the difficulty connected 
with the ghost state. Consequently, we have to work within the energy 
region | p2 | < zl2.

Now, it is well known that Dyson’s integral equation for the photon 
propagator7) can be written in the form

^F (P)/lv ~ ^F (i») f\iv + &F (P) F (P\r ^F (p) •
Here, the causal kernel IIp(p') is given by

//F (p) = i jj (Axeiv {x x'j < P (jfl (x), jv (x)) >0, (4)2

1 Unless otherwise stated, notations and definitions are the same as in our previous papers, 
references 5) and 11).

2 We are referring to the unrenormalized form.
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where //; (.v) means the current operator in the Heisenberg representa
tion8!. It is also convenient to make use of Kallen's kernel defined bv

11 k<P> (5)

These

(6)

a.

(

9 e

the

zl2 
,g-p 
I"«“7’2

i* I2 P
„24. ' (P2 b IJk( 7,)(- />%„ +

• 0 P ''
ZlF(p2, u) means the free propagator for a particle of mass 

seen, the above relation meets the requirement of causality.1 
¡eneral consequence of the renormalization 

asymptotic form of IIF (p), i. e. for large

_3P2— () I./J - "IáI° •
' p(z}=p

functions are connected with each other through the relation

p\v ■ PpP,)-

where 
is easily

On the other hand, as a 
cut-off11!, we obtain from (2) 
— /pyym2 it behaves like

3 %

The same result was obtained by Landau et al. by solving directly an inte
gral equation.

We can proceed to discuss the properties of l/K and llF by means of 
(5) and (6), only if we know something about the matrix elements of the 
current operator Therefore, we shall next investigate the
asymptotic behaviour of this matrix element.

§ 3. Asymptomic Behaviour of the Current Operator.

Let us start by recapitulating the main points concerning the discussion 
of the asymptotic forms of the S-matrix presented in the paper by Konuma

1 Rigorously speaking, the relation (6) holds only when /I2 = oo. Stueckelberg and Wan
ders 10) have shown that, if we expect the cut-off factor to be a result of smearing effects of 
non-local interactions, the causality relation (6) does no longer hold. Nevertheless, we have to 
adopt this relation for the reason mentioned at the end of § 1.

Here, we use, for simplicity, the straight cut-off. The discussion in §3, however, is essen
tially based on the renormalization cut-off’, which we use as a mathematical tool only to obtain 
the asymptotic behaviour. Both methods give the same result in the asymptotic region s). n).

2 While, in the references 4) and 5), the relations (2) and (7) were derived for the case of 
p2 > 0 (space-like), we get the same result for p2 < 0 (time-like) by applying the analytic con
tinuation as suggested in reference 4) or by using the method of renormalization cut-off deve
loped in ref. 5).
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and Umezawa12). These authors showed that, from the invariance under 
the renormalization transformation (or renormalization group13)), an ele
ment of the S-matrix is required to satisfy the following functional equation. 
For the transition amplitude such that its non-vanishing term first appears 
in the niÄ order in perturbation expansion, the functional equation reads

where </0 and 7 are the bare and the renormalized charges, respectively, 
and Z is a product of Z21/2 and Z3/2, factors which come from respective 
external lines of momenta A/s.

Konuma and Umezawa have shown quite generally how to solve this 
equation in the asymptotic region if we accept relation (2). Since we now 
are concerned with matrix elements of the current operator <()|/ z), 
their arguments should be somewhat generalized in two points.

In the first place, it should be noted that, in the derivation of equation 
(8), it was most essential to realize that the charge renormalization could 
be carried out in the usual way, by extracting factors like Z. In the case of 
the general matrix elements of Heisenberg operators, the renormalization 
procedure is somewhat complicated in view of the fact that the “doubled 
Feynman diagram”14), has to be used. On the other hand, for the special 
elements which are considered here, i. e. < 0 | /1 c >, the situation is not 
more complicated than for the S—matrix. In this case, the matrix element 
is equal to that obtained in the so-called mixed representation7), viz. 
< 0 I z > = < 0 J S~jF I z ) = < SO |jF | z ) = < 0 \jp I z >. 'fhe last equality is 
due to the fact that S | 0 > = |o> except for a constant phase factor which is 
to be removed by renormalization.

Secondly, it has to be kept in mind that the quantity which appears in 
(8) is not the matrix element < 0 | /1 z > itself, but the dimensionless scalar 

quantity — 2 Z/ < 0 | /„ | z ) |2, since this quantity can be written as 

[Z31/!Z)'F (p2)p2 e/1 Z^’]2h (S'F, D'f, r\t, e§) = [l)Fc (p2) p2 ev+1]2/i (SFc, DFc, 
Z1 e2)14)> where the first factor is the contribution from the external vertex.

'faking into account the above two points, we can set up the functional 
equation for the matrix element between the vacuum and the state |z> of 
r-photons present with momenta A/s (z = 1, 2, . . . v; v > 3) in the following 
form :
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(9)1

Z 2 yZ<3 1

kikj
A2

ktkj
in2

Á\- k j 
ni2= (ev+1)2F

^ZI<0IàI->I2 - r.P
By virtue of relation (2), this formula may be rewritten in the form

V where we have nut , „- 3 //

; e2

• (10)/ kikj /»i kj
•• ’M m2

kj ■ cd
\ m2 ’ ' ’ ’ in2 ’ ’

Now, it is rather complicated, though not impossible, to lind the general 
solution to this functional equation, since many arguments kt kj are con
tained in F. For our present purpose, however, it is necessary only to look 
for the expression for the sum of F over all the possible states of v-photons 
which satisfy the condition p = ki/t. If we put 3 = F, then 3» now 

t P=£1C
being a function of in2, Cq, and - p2 only, should satisfy the following simpli
fied equation :

(H)2

When solving this equation, it should be remembered that the Landau 
approximation makes the cut-off parameter appear together with the bare 

I rj2 I
charge c0 in the combination Cq log L—y in the asymptotic region. Therefore, 

bearing in mind relation (2), we can rewrite (11) in the form

f(-p2)\
m2’ f(A2) ) (12)

1 In our ease, !•' depends only on a single parameter A which comes from the cut-off of
the photon propagation function. It is also to be remarked that exactly speaking, in the last 
argument in F on the right hand side of (9), we must substitute the charge em defined by 

e2 le'2 = k’Dr, , e'2 | . But, under our approximation, /r I) = 1 in the domain
m '' / ¡F|=m5

0 < I I < m2 and so we can put e\ = c2- See in this connection the third paper of reference 4).
2 The lower limit of each photon energy is conveniently taken as the elctron mass, so that 

the infrared divergence may be neglected. (Otherwise, another dimensional constant has to be 
introduced into F or 3)-
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e2 
where we liave used the relations —, ,9X

2 f(A )
—= 3 n (1 - /’(~P2)) and where we zrr

ios^p- =3 (1 - and g2 lo8 

have, moreover, redefined the func

1 In some cases, it is still possible to get the concrete asymptotic expression for the current 
operator itself.

The most general matrix element ( 0 | j | z ), for the state in which c pairs of electrons and 
v-photons are present, satisfies the following functional equation:

tion 3 in such a way that 3 (æî 3rc(l - y)) -> 3 (æ; y)- Equation (12) clearly 
show stliat the only possible solution 3 *s given hv

(13)

Here, it should be noted that the function 3o d°es no longer contain the 
charge e2 and, thus, is nothing but the so-called Born approximation. By 
this we mean conventionally the first non-vanishing term in the perturbation 
theory expansion.

In summarizing our results obtained so far, we get the following 
equation :

*’ r z
|o> (14)1

This equation can easily be solved in the case that one of the arguments —kLk-, say, is extre
mely large as compared with others, so that —k¡k¡ —p1. The final expression then reads

<01 1z > " z2 <- p2f <01 C” Iz >■
Here, it is interesting to compare the result with the conjecture by Kallén in his general discus
sion (without any approximation) 6)

- 7pz^7^zd-p!)<0|/;?°r”f >•
In this connection, it should further be remarked that the above functional equation has 

this solution if, and only if, the function Z2(x) is equal to some power of the function /(x) or Zg(x). 
Landau’s approximation meets this requirement in a special gauge, for Zg = f° = 1. See also 
reference 15).
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§ 4. Completion of the Argument. Discussion.

We are now in a position to complete our argument. If we restrict the 
summation in (5) to the states considered above, and substitute (14) 
into it, then we obtain an inequality for 17K.

It has already been shown by Kâllén that the absolute square of 
<() I jK°rn I À'iÂ’2 . . . kv} gives the probability in lowest order perturbation theo
ry4), for the emission of v-photons in a weak external field; thus, Gup
ta’s16) result can be used and gives the following expression in the asymp
totic region

c» I;,«»"Io.;..-/.', ( 15)

with a constant c which is of the order of magnitude unity.
Bv means of (5), (14), and (15) we now get the following inequality 

f() r llK

where a, the upper limit of the sum, is not larger than 1/— /?2/with 

L'n «=> /n. If tv and a log2 —5- are very large, (16) mav be rewritten in the form

(17)

From the relation ((>), together with (1(>) and (17), we can immediately 
deduce the following results. Let us first consider the real part of 17F (p2). 
If we take /l2»—p2»/n2 we obtain the cut-oil' dependent term which

, because in this caseincreases much faster than any power of lo¡

1/alog

Secondly, we look at the imaginary part of HF (p1). If -p2» in1 
we find that a non-negligible imaginary part must exist, which strongly 
depends on -p2 and which satisfies the same inequality as do ( 1(>) and 
(17). Therefore, it appears that the absolute value of IIF (p2) must be very 
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much larger than the value given by (7) (as far as the region zl2» zl2) 
- p2 > e100 m2 is concerned)1.

These results are inconsistent with (2) and (7) which have been derived 
from the same starting point as (17). This puzzling situation can be explained 
if, and only if, Landau’s approximation is incorrect. In spite of this, it is, 
of course, possible that other difficulties, independent of those found by 
Landau, exist within the framework of present field theory.

If the first alternative is true, it clearly means that there are appreci
able contributions from terms neglected in Landau’s approximation. This 
is not so inconceivable since, in the nth order of perturbation expansion, 
we get, roughly speaking, a contribution e2n [n! c0 + (n - 1)! cy log (zl2/m2) + ... 
+ cn log” (A2/™2)] and all the terms, with the exception of the last one, are neg
lected in his approximation. The ratio of the former to the latter is approx
imately ni I log” (zl2/m2) or at least n! / (137 x 3 7t)”. Consequently, even if the 
approximation is good up to some orders, it would no longer be justified in 
higher orders, however large the cut-oil' maybe. In other words, here it is not 
allowed to interchange the two kinds of limiting processes, viz. lim lim 

/t~>OO w->oo 
and lim lim . The latter limit has recently been studied in great detail bv 

ra->oo /[-> oo
several groups5?. On the other hand, it was pointed out by Kallen6) that our 
result (16) is consistent with every result obtained in perturbation theory.

Furthermore, if the second alternative is taken to be true, it would 
necessarily lead to the conclusion that present quantum field theory has no 
mathematically consistent solution at all.

Finally we like to add a few words about (ps) (ps) meson theory5), 17>. 
From the outset, it is evident that here Landau’s approximation is not 
so powerful as in quantum electrodynamics. In this case, the cut-off 
momentum is of the order of the nucleon mass M because of the large value 
of the coupling constant. Consequently, we are no longer left with any 
asymptotic region —p2 » M 2 in which this approximation is applicable. 
However, we might still make a formal argument, artificially supposing the 
coupling constant to be small and therefore using the same technique. If 
that is done, we get the same result for meson theories as for quantum 
electrodynamics.

1 As far as the renormalized kernel nF<; is concerned, the above statement is true, irre
spective of the region of A. (Landau’s nFr is given by (7), but with replacement of zl2—>m2).
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